

The Cobbler’s Children Finally Get New Shoes:
A Technical Chronicle of Migrating Virtual-DBA from Informix to PostgreSQL

1. Introduction: The Inertia of Legacy Success

In the technology services sector, a profound irony often exists: the firms most adept at modernizing client
infrastructure are frequently the last to update their own. For XTIVIA, a company that has spent decades
optimizing data environments for major retailers, credit unions, legal firms, government agencies, and
many others, the internal "Virtual-DBA" platform stood as a testament to this phenomenon. It was a
robust, essential system that had been keeping tabs on thousands of database instances for a diverse
group of clients for almost 30 years. It was reliable, battle-hardened, and fundamentally anchored in the
past.

The heart of the Virtual-DBA service beats on IBM Informix, utilizing the TimeSeries data type to ingest
and process the relentless stream of metric data generated by client environments. For years, this
architecture was not just sufficient; it was superior. Informix TimeSeries offered ingest speeds and storage
efficiencies that few contemporaries could match. However, as 2025 approached, the gravity of technical
debt began to outweigh the stability of the legacy system. The decision to modernize was no longer a
matter of preference but a strategic imperative driven by fiscal pressures, incompatibility with modern
AI-ready data ecosystems, and the need to demonstrate cloud-native competence to the market.

This report chronicles the technical and operational journey of migrating that core system from Informix
to a modern PostgreSQL architecture powered by the TimescaleDB extension from Tigerdata (formerly
Timescale). It details the architectural decisions, the specific engineering challenges faced by Lead
Architect Brad Patterson, and the tangible fiscal and technical outcomes of the transformation. This is not
a marketing brochure; it is a dissection of a high-stakes migration performed without a safety net,
designed to offer peer-level insights to technology professionals contemplating similar leaps.

The Technical Debt of "Good Enough"
The legacy Virtual-DBA architecture was a classic example of a system that performed too well to be
easily replaced. It relied on Informix's specialized TimeSeries extensions to handle the high-velocity writes
associated with database monitoring, capturing those resource and performance metrics every few
minutes from thousands of remote agents. The operational logic was encapsulated in a complex web of
Perl programs, most notably a somewhat monolithic processing script, which had been patched and
extended over more than a decade.

While effective, this stack presented significant "Legacy Application Hurdles." Business logic was trapped
in Informix Stored Procedure Language (SPL) and external 4GL programs. These are technologies that
resist simple "lift and shift" migration strategies. They require what the team refers to as "technical
archaeology", digging through layers of undocumented logic to understand intent before re-engineering
for a modern environment.

Furthermore, the human element had become a critical risk factor. The pool of senior database
administrators and developers with deep expertise in legacy C code, Informix 4GL, and modern cloud
networking is vanishingly small. In late 2025, when XTIVIA sought to expand its team for the PostgreSQL
era, the response was overwhelming, with over 120 qualified applicants. In contrast, sourcing talent for
the legacy Informix stack had become a persistent challenge. Our current staff of Informix experts is busy

​

with the care and feeding of our Informix clients; we didn’t want them to waste cycles on our internal
systems any longer. The inability to readily staff the platform threatened the service's long-term viability.

The Fiscal Mandate
The catalyst for this migration was not purely technical; as you can imagine, it was financial. The need for
the Database segment to stabilize expenses necessitated a rigorous review of the operational expenses
and a strategic pivot toward an open-source solution.

Continuing to pay substantial licensing and support fees for a proprietary database engine, when capable
open-source alternatives were available, was fiscally indefensible. Analysis of client projects suggested
that migrating from commercial engines like Oracle or Informix to open-source platforms like PostgreSQL
could reduce administrative and licensing costs by 40% to 60%. To stabilize margins and free up capital for
strategic investments in AWS and AI partnerships, the Virtual-DBA team needed to realize these savings
internally. The goal was to shift from a heavy Capital Expenditure (CapEx) model driven by proprietary
licenses to a flexible Operational Expenditure (OpEx) model optimized for AWS cloud consumption.

2. The Decision Matrix: Why PostgreSQL and TimescaleDB?

The path to modernization was not singular. The team evaluated multiple strategies, including a simpler
re-platforming of the existing Informix environment to a more efficient infrastructure.

The Option to Stay: Informix on ARM64
One viable alternative was to migrate the existing Informix workload to the ARM64 architecture. With
the release of HCL Informix 15, the platform gained native support for ARM64 processors, such as AWS
Graviton. Internal research and marketing materials indicated that this move alone could reduce cloud
infrastructure costs by 30% to 50% due to the superior price-performance ratio of ARM-based instances.

This approach offered a "path of least resistance" regarding the database engine itself. It would have
preserved the existing data structures and leveraged the team's deep historical knowledge of Informix.
However, it failed to address the application-layer debt and software licensing fees. The legacy 4GL code
and processing scripts would remain; the talent gap would persist; retail database licensing fees would
still need to be paid; and the system would remain isolated from the rapidly expanding ecosystem of
modern observability and CI/CD tools that natively support PostgreSQL. Consequently, the team
determined that this optimization was insufficient; a fundamental architectural shift was required.

The Pivot to PostgreSQL
PostgreSQL was selected as the target platform because it has effectively become the "operating system"
of the database world, popular, extensible, and free from restrictive licensing. However, standard
PostgreSQL tables are not optimized for the massive ingest rates and time-series query patterns required
by the Virtual-DBA monitoring service.

To bridge this gap, the team selected the TimescaleDB extension from Tigerdata (formerly Timescale).
This extension supercharges PostgreSQL with capabilities specifically designed for time-series data,
offering a compelling blend of open-source flexibility and specialized performance.

Key Technical Enablers of TimescaleDB

●​ Hypertables: The TimescaleDB extension introduces the concept of hypertables, which
automatically partition data by time intervals. This abstraction allows the application to interact

​

with what appears to be a single table while the database engine handles manageable "chunks" of
data in the background. This is critical for query performance when retaining historical metrics for
trend analysis.

●​ Continuous Aggregates: The ability to automatically maintain materialized views of aggregated
data (e.g., 5-minute, 1-hour, or daily averages) fundamentally changed the reporting architecture.
Instead of running expensive, resource-intensive batch jobs to summarize data, the database
maintains these aggregates in near real-time, significantly reducing the read load during reporting.

●​ Columnar Compression: TimescaleDB’s columnar storage engine offers massive compression
ratios, often exceeding 90%. For a system storing terabytes of historical metric data, this directly
reduces storage costs on AWS EBS volumes.

This decision marked a pivot from a proprietary monolith to a cloud-native stack. It enabled the team to
reimagine the supporting infrastructure, shifting from legacy scripts to modern, scalable technologies.

3. Architecture of the New World

Architecting the new solution required a complete rethinking of how data moved through the
Virtual-DBA ecosystem. Brad Patterson, the Senior Systems Engineer and lead architect for the project,
drew on years of experience, including a complex infrastructure migration from AWS East to West in
2015, to design a system that prioritized resilience and modularity.

The Data Flow Redesign
The legacy workflow was a linear, file-based process. Remote agents collected data and used a one-way
transmission method of Secure Copy Protocol (SCP) or TLS-encrypted email to transfer files to a central
loader server, where the processing script parsed and loaded them into Informix. This tightly coupled
architecture, if not implemented properly, could result in ingestion failures of client monitoring metrics if
the parser or loader encounters an error.

The new architecture introduced decoupling and modernization at every layer. The transport layer, which
handles Secure Copy Protocol (SCP) and email for backward compatibility with existing client agents,
remained in use. Although the core script was not retired, the ingestion logic was substantially
modernized and modularized to support non-blocking I/O operations and facilitate integration with other
AWS services. The target database was a robust PostgreSQL instance running the TimescaleDB extension
on AWS EC2. The decision to use EC2 rather than a managed service such as RDS for this specific
component was driven by the need for granular control over TimescaleDB extension versions and the
underlying filesystem tuning required to handle the workload's extreme I/O profile.

Mapping Concepts: TimeSeries to Hypertables
One of the most complex aspects of the migration was the conceptual translation of data structures.

●​ Informix TimeSeries: This data type packs time-stamped data into a specialized structure within a
single column of a row. It is highly efficient but proprietary and somewhat opaque to standard SQL
queries.

●​ TimescaleDB Hypertables: These look and behave like standard SQL tables but are partitioned into
chunks based on time.

This difference necessitated a rewrite of every query and stored procedure that interacted with metric

​

data. The team could not simply "port" the SQL; they had to refactor the application's fundamental
approach to data retrieval. Queries that previously extracted data from a TimeSeries container had to be
rewritten to query a Hypertable, often leveraging TimescaleDB’s specialized time-bucket functions for
efficient aggregation.

4. In The Trenches: The Preparation Phase (2024 - Early 2025)

The migration project was a long-term endeavor, a marathon, not a sprint, executed by a small, specialized
team. While formal planning began in early 2024, the "heavy lifting", you know, the coding, infrastructure
build-out, and testing, dominated late 2024 and the first half of 2025.

The Parallel Load Strategy
To mitigate the risk of a single, high-risk changeover, Brad Patterson implemented a Parallel Load strategy.
For several months leading up to the final migration, the system was configured to fork the incoming data
stream. Every metric file received from a client was processed twice: once by the legacy Informix system
and once by the new PostgreSQL staging environment.

This dual-ingest approach served two critical functions:

1.​ Validation of Data Integrity: It allowed the team to compare the output of the two systems directly.
If the Informix system reported a CPU spike for a specific client at 10:00 AM, the PostgreSQL
system had to show the exact same spike. Discrepancies helped identify bugs in the new parsing
logic before they affected production reporting.

2.​ Performance Stress Testing: The PostgreSQL instance was subjected to the full write volume of the
production environment. This real-world load testing was invaluable for tuning the TimescaleDB
chunk intervals and compression policies.

5. The Migration Event: July 2025

After months of preparation, the cutover date was set for Thursday, July 24, 2025. The objective was to
transition the Virtual-DBA admin portal and the live data flow from Informix to PostgreSQL.

The Execution Plan
The cutover followed a strict sequence designed to be transparent to our customers, minimize data loss,
and ensure a clean transition of authority:

1.​ Notifier Shutdown: The alerting engine connected to Informix was disabled to prevent duplicate or
erroneous pages during the transition.

2.​ Portal Maintenance: The admin portal was taken offline.
3.​ Final Data Sync: Scripts were run to synchronize the "slow-moving" configuration tables:

Technicians, Contracts, Escalation Orders, Maintenance Windows, and Case Details.
4.​ Traffic Rerouting: The AWS Load Balancers were reconfigured to point traffic to the new

PostgreSQL-backed web servers.
5.​ New System Activation: The new notifier connected to PostgreSQL was enabled.

​

6. Post-Migration Optimization: The "TimescaleDB" Index Hiccup

The stability of the new system was tested severely about a week after the cutover. Users began reporting
that the admin portal was sluggish, particularly when navigating back to the main dashboard.
Brad Patterson’s investigation into the pg_stat_activity views revealed a troubling metric: the database
had performed approximately 448 million full table sequential scans on a critical metadata table.

The Missing Index
The root cause was a subtle difference in how Informix and PostgreSQL optimize queries. In the schema
conversion, a critical index on the key identifier columns had been omitted. In the Informix environment,
the query optimizer had handled this access path efficiently without the specific index. In PostgreSQL,
however, the absence of the index forced the engine to scan the entire table every time it needed to check
the status of a monitored database. With thousands of checks occurring every minute, the CPU on the
new EC2 instance spiked to 60%, creating a bottleneck that threatened to bring the portal to a standstill.

The "Concurrently" Trap
The standard remediation for a missing index in a live PostgreSQL environment is to use the CREATE
INDEX CONCURRENTLY command. This allows the index to be built in the background without locking
the table against writes, essential for a 24/7 monitoring system that cannot afford to stop ingesting data.
However, the team encountered a critical limitation: the specific version of the TimescaleDB extension in
use at the time did not support concurrent index creation on Hypertables.

This presented a dilemma. A standard CREATE INDEX would lock the table, halting data ingestion for the
duration of the build, potentially an hour or more, given the table size. Doing nothing would allow the
system to continue to degrade. Brad orchestrated a maintenance window where the ingestion consumers
were briefly paused. The index was built as rapidly as the underlying storage's Provisioned IOPS allowed.

Once the index was in place, the home page load times dropped from seconds to milliseconds, and CPU
utilization stabilized immediately. This incident served as a stark reminder that even robust open-source
tools have specific limitations that must be understood and managed.

7. Strategic Impact and Financial Results

Six months post-migration, the data confirms that the strategic pivot was successful. The benefits extend
beyond simple cost avoidance into operational agility and security compliance.

Fiscal Savings (ROI)
The primary financial objective was achieved. By decommissioning the Informix support contract and
eliminating the associated licensing fees, the department removed a significant fixed cost from its ledger.
While cloud compute spend increased marginally for a period due to the provisioning of new EC2
instances for running dual environments, this expenditure is variable and optimizable. The cloud team is
actively applying AWS Savings Plans and Reserved Instances to further reduce costs.

Furthermore, the storage efficiency of TimescaleDB is delivering long-term value. The columnar
compression inherent in the platform yields storage savings of over 90% compared with legacy row-based
storage. This allows the service to retain granular historical data for longer periods without incurring
prohibitive EBS storage costs.

Performance and Modernization
The modernization of the ingestion layer has resulted in a system that is significantly faster, less

​

resource-intensive, and more scalable. The new loaders process incoming metric files in a fraction of the
time required by the legacy scripts. Additionally, the platform is no longer a "black box." It is now
integrated with the broader ecosystem of PostgreSQL tools, allowing the team to explore advanced
features like pgvector for AI-driven anomaly detection, capabilities that were technically infeasible on the
legacy stack.

Security and Compliance
The infrastructure migration forced a modernization of the security posture. By moving to Rocky Linux
and enforcing modern SSH key standards, the team eliminated a vast surface area of potential
vulnerabilities associated with legacy operating systems and crypto policies. The platform can now pass
rigorous SOC 2 Type 2 audits without requiring "exceptions" for outdated components. The system is now
compliant by design rather than by exception.

Market Credibility
Perhaps the most significant outcome is the intangible asset of credibility. When XTIVIA architects engage
with prospective clients, whether a retailer considering a move to Aurora or a financial institution
optimizing their SQL Server estate, they can speak from in-house, recent, direct experience. They can
articulate the risks of database optimizer differences and the nuances of migration because they have
navigated these challenges within their own core business.

8. Technical Deep Dive: Migration War Stories

For the engineers and architects, the following sections detail specific technical hurdles that required novel
solutions during the migration process.

The "Invalid Byte Sequence" Trap
Character encoding is a frequent source of failure in database migrations. Informix is notably permissive
regarding character sets, often accepting and storing data that technically violates the defined encoding.
PostgreSQL, by contrast, is strict.

During the initial data extraction using dbexport and custom unload scripts, the migration scripts
repeatedly failed with "invalid byte sequence for encoding" errors. The legacy database contained
garbage characters, likely introduced via copy-paste operations in case note comments over many years,
that were not valid UTF-8.

The Resolution: The team implemented a sanitization pass within the extraction pipeline. Using the iconv
utility with the -c flag, they stripped invalid characters from the data stream before piping it into the psql
import command. This experience reinforced the axiom that data integrity in a legacy system should never
be assumed; it is often only verified when the data is moved.

The Application Logic Rewrite
The most labor-intensive aspect of the migration was porting the business logic contained in the
monolithic processing script. This script did far more than move data; it contained the rules for duplicate
detection, escalation hierarchies, and maintenance window logic.

This modularity now allows the team to update routing logic without the risk of breaking the parsing
engine, a level of agility that was nearly impossible with the legacy code.

​

9. Conclusion: The Strategic Pivot to 2026

The strategy for 2026 is built on this foundation: helping clients escape the gravity of legacy technical
debt and move to modern, cost-effective, high-performance cloud data platforms. The team has the scars,
the scripts, and the success story to prove that such a transformation is possible, even for the most
entrenched legacy systems.

If your organization is tethered to an Informix, Oracle, Db2, or SQL Server estate that feels like an anchor;
if the fear of the "Legacy Application Hurdle" or the "Unicorn Skill Gap" is paralyzing your modernization
efforts; or if you simply need to understand the real-world ROI of moving to PostgreSQL and the
TimescaleDB extension, engage with the team that just completed the journey.
Eat your own dog food. It makes you a better cook.

Data Appendix: Key Migration Statistics

Metric Legacy System
(Informix)

Modern System
(PostgreSQL/TimescaleDB)

Impact

Database Engine IBM Informix 12.10 PostgreSQL 16 +
TimescaleDB

Open Source / No
License Cost

Data Type Informix TimeSeries TimescaleDB Hypertables Standard SQL
Interface

Ingest Logic Perl Scripts (Monolithic) Modernized Logic (Modular
Functions)

Async I/O /
Maintainability

Hosting AWS EC2 (Legacy Gen) AWS EC2 (Modern Gen) Performance /
Security

Storage Savings Baseline >90% Compression Significant OpEx
Reduction

SSH Security Older Algorithms
(Deprecated)

Modern Standards SOC 2 Compliance
Alignment

Support Costs High (Proprietary) Low (Community + Internal) ~40-60% Admin
Savings

Migration Timeline & Milestones

●​ Early 2024: Project Kickoff & Proof of Concept (POC) data migration.
●​ Late 2024: Infrastructure build-out and verification of VDBADB-PG.
●​ Nov 2024: Loader Server Migration & SSH Key Remediation.
●​ Early 2025: Parallel Load implementation and historical data backfilling.
●​ June 2025: Final refinement of PG loader programs.

​

●​ July 22, 2025: Production Cutover (Informix -> PostgreSQL).
●​ July 24, 2025: Post-migration stabilization.
●​ August 2025: Decommissioning of legacy Informix production servers.

This timeline reflects a measured, risk-averse approach suitable for mission-critical systems, prioritizing data
integrity and service continuity over speed of execution.

ABOUT XTIVIA
At XTIVIA, we've been providing IT solutions and consulting services for over 30 years with a wide range of services,
including technology assessments, IT service and asset management, software development, data analytics, cloud
migration, DevSecOps, ERP, and enterprise content management. Dedicated to each discipline, ensuring that our clients
receive the best possible service. Through strategic acquisitions, we've acquired talented people who are experts in
their industries, passionate about what they do, and committed to providing exceptional service to our clients. Whether
you need to improve your IT infrastructure or implement new software solutions, XTIVIA is here to help you achieve
your business goals. XTIVIA has offices in Colorado, New York, New Jersey, Texas, Virginia, and India. www.xtivia.com

​

http://www.xtivia.com

	The Cobbler’s Children Finally Get New Shoes:
	A Technical Chronicle of Migrating Virtual-DBA from Informix to PostgreSQL
	1. Introduction: The Inertia of Legacy Success
	The Technical Debt of "Good Enough"
	The Fiscal Mandate

	2. The Decision Matrix: Why PostgreSQL and TimescaleDB?
	The Option to Stay: Informix on ARM64
	The Pivot to PostgreSQL

	3. Architecture of the New World
	The Data Flow Redesign
	Mapping Concepts: TimeSeries to Hypertables

	4. In The Trenches: The Preparation Phase (2024 - Early 2025)
	The Parallel Load Strategy

	5. The Migration Event: July 2025
	The Execution Plan

	6. Post-Migration Optimization: The "TimescaleDB" Index Hiccup
	The Missing Index
	The "Concurrently" Trap

	7. Strategic Impact and Financial Results
	Fiscal Savings (ROI)
	Performance and Modernization
	Security and Compliance
	Market Credibility

	8. Technical Deep Dive: Migration War Stories
	The "Invalid Byte Sequence" Trap
	The Application Logic Rewrite

	9. Conclusion: The Strategic Pivot to 2026
	Data Appendix: Key Migration Statistics
	

	Migration Timeline & Milestones
	ABOUT XTIVIA

